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Introduction

The use of phylogenetic comparative methods (PCMs)

has become standard in studies seeking to identify

evolutionary correlations across taxa. These methods

address the problem of phylogenetic nonindependence:

because taxa may be similar simply due to shared

ancestry, comparative data often violate statistical

assumptions of independence. One use of PCMs is to

draw inferences about the covariation of traits across taxa

while taking into account this phylogenetic noninde-

pendence (Felsenstein, 1985; Harvey & Pagel, 1991;

Garland & Ives, 2000; Martins, 2000).

Perhaps the most widely used PCM is phylogenetically

independent contrasts (PIC; Felsenstein, 1985; Garland

et al., 1992). This method removes the effect of shared

evolutionary history by calculating differences in trait

values between sister taxa (both extant and ancestral). If

standardized differences, or contrasts, in one trait

significantly covary with contrasts in another trait, then

the two traits are evolutionarily correlated. In other

words, change in one trait has been accompanied by

change in the other. Simulation studies indicate that PIC

performs well in a wide variety of situations and under

different models of evolutionary change (Martins et al.,

2002). However, one important consideration, the shape

of the relationship between the traits, has received less

attention than it deserves.

In the original formulation of PIC, Felsenstein (1985)

assumed that pairs of trait values were drawn from a

bivariate normal distribution, leading to a linear rela-

tionship between expected values of the traits. If this is

the case, contrasts will be linearly related as well, with

the same expected slope as the true slope (Harvey &

Pagel, 1991). However, if the underlying relationship is

nonlinear, difficulties arise in PIC analysis. Harvey &

Pagel (1991, Fig. 5.19) point out that a nonlinear

relationship between traits may yield a relationship

between contrasts that is opposite in sign to that of the

true relationship. However, arriving at such a patently

false conclusion is prevented by forcing the line relating

the contrasts through the origin (Grafen, 1989, 1992;

Garland et al., 1992). A more common consequence of

nonlinearity in the underlying relationship is an increase

in scatter in the relationship between the contrasts.
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Abstract

The method of phylogenetically independent contrasts is commonly used for

exploring cross-taxon relationships between traits. Here we show that this

phylogenetic comparative method (PCM) can fail to detect correlated

evolution when the underlying relationship between traits is nonlinear.

Simulations indicate that statistical power can be dramatically reduced when

independent contrasts analysis is used on nonlinear relationships. We also

reanalyse a published data set and demonstrate that ignoring nonlinearity can

affect biological inferences. We suggest that researchers consider the shape of

the relationship between traits when using independent contrasts analysis.

Alternative PCMs may be more appropriate if data cannot be transformed to

meet assumptions of linearity.
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As an example, consider a hypothetical phylogeny of

10 species with values for two traits (Fig. 1a). The

underlying relationship between the traits is nonlinear

(Fig. 1b), and the relationship between the resulting

contrasts is characterized by much scatter (Fig. 1c). The

scatter arises because a given contrast in trait 1 is not

associated with a consistent contrast in trait 2. Rather,

contrasts in trait 2 are related not only to the magnitude

of the contrasts in trait 1, but also to the absolute values

of trait 1. An additional source of error is that nodes are

assigned values away from the underlying, true line. A

consequence of the increase in scatter is a reduction in

the statistical power of PIC analyses to detect the true

relationship between traits.

Empiricists and theoreticians discussing PIC rarely make

explicit the assumption of linearity in the relationship

between trait values. Among various descriptions of

independent contrasts (Felsenstein, 1985; Burt, 1989;

Grafen, 1989; Harvey & Pagel, 1991; Garland et al., 1992,

1999) only Harvey & Pagel explore in any detail the

consequences of nonlinearity of the underlying relation-

ship between traits [although Garland et al. (1992) discuss

nonlinear patterns between contrasts, a different issue].

This lack of emphasis from theoreticians may well be

because the problem is obvious to them; unfortunately,

empiricists seem to overlook the issue as well. To investi-

gate whether empiricists routinely assess linearity be-

tween traits before calculating contrasts, we searched for

comparative studies published in 2002 in the journals

Ecology, Evolution, Journal of Evolutional Biology and Pro-

ceedings of the Royal Society of London, Series B. Of 29 papers in

which PIC analyses were carried out on continuous traits,

only one states that the shape of the relationship between

traits was evaluated. It would appear, then, that empir-

icists do not ordinarily test for linearity.

In this paper, we use computer simulations to demon-

strate that when the underlying relationship between

two variables is nonlinear, PIC analysis suffers from

reduced statistical power. We also reanalyse a published

data set to illustrate that this problem can affect

inferences drawn from PIC analyses. Finally, we discuss

methods of incorporating nonlinearity into phylogenetic

comparative analyses.

Methods and results

Computer simulations

We used simulation methods to assess the statistical

power of PIC when traits are related in a nonlinear

fashion. We simulated the evolution of two traits, x and

y, along 15 randomly generated phylogenies, each with

20 extant taxa. The phylogenies were generated in

COMPARE 4.4 using branching process models to

generate topologies and branch lengths (Martins,

2001). The traits evolve such that they are nonlinearly

related, y ¼ xb. Our simulated evolutionary process

begins with a single ancestor at the root of the

phylogeny and results in phenotypic values for extant

taxa at the tips. In order to follow Felsenstein (1985) in

modelling the correlated evolution of traits as a Brow-

Fig. 1 An example of the consequences of a nonlinear underlying

relationship. (a) Ten species (a–j) are related as shown in the

phylogeny. Each branch segment has a length of either 1 or 2 units.

The internal nodes are labelled n1–n9. Values for two variables, traits

1 and 2, are given for each species. (b) Scatterplot of the relationship

between the two traits, labelled by species. Note that no particular

clade is responsible for the nonlinearity. (c) Plot of standardized

contrasts in trait 2 against standardized contrasts in trait 1. Contrasts

in trait 1 were positivized for presentation as recommended by

Garland et al. (1992). The tight underlying relationship in (B) has

degenerated into a loose scatter of points, reducing our ability to

detect a relationship. The points are labelled by the nodes they

represent.

710 S. QUADER ET AL.

J . E V O L . B I O L . 1 7 ( 2 0 0 4 ) 7 0 9 – 7 1 5 ª 2 0 0 4 B L A C K W E L L P U B L I S H I N G L T D



nian motion (BM) process, we assumed that x and y

evolve on a log scale. Thus X (loge x) and Y (loge y)

follow a BM process and are linearly related. At each

new generation, X and Y values were drawn from a

bivariate normal distribution defined by a vector of

mean values (the trait values in the previous genera-

tion) and a variance–covariance matrix, which deter-

mines the slope of Y on X. By varying this slope, we are

in effect varying b (and thus the degree of nonlinearity)

in the original relationship y ¼ xb. When b ¼ 1, the

relationship between y and x is linear, and when b ¼ 0,

there is no relationship between the variables (i.e. the

null hypothesis is true). We varied b between )3 and 3

in increments of 0.2 by changing the covariance

between X and Y and the variance in Y, according to

the standard relationship between slope, variances and

covariance. The per-generation variance in X was kept

constant at 0.01, as was the correlation between X and

Y, at 0.8. Figure 2 illustrates the shapes of the different

nonlinear relationships we used.

For every value of b we performed 100 simulation runs

along each of the 15 random phylogenies. All trees were

standardized to a total branch length of 100 generations

from root to tip. In each run, we assigned starting (root)

values of (0, 0) to X and Y. At the end of each run we

created raw trait values by exponentiating X and Y for

the tip taxa. We performed PIC analyses on both the raw

(x, y) and the log-scale (X, Y) trait values using the ‘ape’

package of Paradis et al. (2002) in the statistical and

programming language R, version 1.6 (Ihaka &

Gentleman, 1996). Contrasts obtained in this way were

identical to those calculated using COMPARE 4.4. For

each run, we checked that contrasts in both raw and log-

transformed traits were adequately standardized by

regressing the absolute values of the contrasts on their

expected standard deviation (the square root of the sum

of the branch lengths: Felsenstein, 1985; Garland et al.,

1992). We then assessed the relationship between con-

trasts using least-squares linear regression through the

origin (Garland et al., 1992; Rohlf, 2001) at a significance

level of 0.05.

The results of our exploration of the effect of nonlin-

earity on the performance of PIC are illustrated in Fig. 3.

There was a drastic reduction in the statistical power of

PIC as b became more negative; even a mildly nonlinear

negative function (b ¼ )1) yielded a statistical power of

only about 0.6, which means that in approximately 40%

of runs PIC analysis did not detect a true relationship at

this value of b. Positive values of b did not have as drastic

an effect, although statistical power did decline slightly at

extreme values (Fig. 3). Log-transformation of the traits

solved the problem; statistical power after transformation

was 1 regardless of the sign or magnitude of b. Thus, as

expected, PIC always detected a true relationship after

log-transformation of variables related through a power

function. Type I error (the proportion of runs in which

the null hypothesis was rejected when b ¼ 0), averaged

across the 15 phylogenies, was close to that expected for

both untransformed traits [mean ± 95% confidence

interval (CI): 0.08 ± 0.01) and log-transformed trait

values (0.05 ± 0.01).

An empirical example

We illustrate the effect of nonlinear relationships on

biological inferences with a reanalysis of a published data

set on morphological and ecological variables across 35

Fig. 2 Shapes of relationships evaluated in computer simulations of

the effect of nonlinearity on independent contrasts analyses. Solid

lines indicate negative values, and dashed lines indicate positive

values of b, which was varied in the simulations from )3 to 3, at

intervals of 0.2.

Fig. 3 Statistical power (proportion of runs in which the null

hypothesis, H0, was rejected when b „ 0) of independent contrasts at

varying degrees of nonlinearity, both on untransformed (solid

diamonds) and loge-transformed (linearized) data (open circles).

Nonlinearity is defined by the parameter b in the relationship y ¼ xb.

When b ¼ 0, the proportion of runs in which the null hypothesis

was rejected is an estimate of type I error. Each point represents a

mean across 15 phylogenies; error bars are 95% CIs.
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genera of birds of prey (raptors) in the family Accipitridae

(Krüger, 2000). Krüger found that several significant

correlations between these variables disappeared after

PIC analysis. Using his data (see Appendix in Krüger,

2000 and phylogeny in Holdaway, 1994) we reanalysed

the relationship between raptor population density and

prey mass. One would expect population density of

predators to decline with prey mass, and because energy

requirements scale allometrically with body mass, the

relationship may well be nonlinear. This appears to be

the case (Fig. 4a). A linear regression describes the data

poorly, as seen from a plot of the residuals from a linear

regression against prey mass (Fig. 4b). If a linear regres-

sion were appropriate, residuals should be scattered at

random around zero and should show no pattern when

plotted against the independent variable. Instead, large

deviations from zero are apparent at low values of prey

mass, and these deviations are asymmetrical (many small

negative residuals and a few large positive residuals).

Loge-transformation of the data appears to linearize the

relationship satisfactorily (Fig. 4d) as shown by the

corresponding residual plot (Fig. 4e).

We carried out PIC analyses on the raw variables, as

well as on the loge-transformed variables. Contrasts were

satisfactorily standardized in both cases (according to the

criterion of Garland et al., 1992) and, as in the simula-

tions, we evaluated the relationships between standard-

ized contrasts by performing least-squares linear

regression through the origin.

Contrasts derived from untransformed variables were

not significantly related (Fig. 4c; y ¼ )0.0028x,

R2 ¼ 0.07, F1,33 ¼ 2.66, n.s.). This would lead one to

the conclusion that changes in the population density of

raptors are not evolutionarily correlated with changes in

the mass of their prey. However, contrast analysis on the

log-transformed variables revealed a clear association

between population density and prey mass (y ¼ )0.326x,

R2 ¼ 0.26, F1,33 ¼ 11.64, P < 0.05; Fig. 4f). Thus, when

the data are appropriately analysed, we find the expected

negative relationship between the two variables.

Fig. 4 Reanalysis of the relationship

between raptor population density and prey

mass from Krüger (2000). Plots of the across-

genus relationship (a, d), residuals (b, e), and

the relationship between contrasts (c, f:

x-axis positivized) based on untransformed

(left) and loge-transformed (right) genus

values.
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Discussion

Our simulation results indicate that the shape of the

relationship between traits can affect PIC analyses. Using

a simple power function we have shown that when

variables are related in a nonlinear manner, the rela-

tionship between the contrasts suffers from high scatter

and the power to detect a significant association declines.

The reduction in statistical power is dramatic for negative

relationships because these are particularly nonlinear in

our simulations (Fig. 2). However, when relationships

are linearized PIC works well, as demonstrated both by

the simulations and a reanalysis of a published data set.

Based on these findings, we conclude that researchers

who use PIC to investigate the correlation between traits

should evaluate the shape of the relationship, and that

this is an important step in the analysis.

Detecting nonlinear relationships between traits

In many cases, we may predict beforehand that two traits

will be nonlinearly related. The pattern that comparative

biologists can most commonly expect is perhaps allo-

metry described by power functions of the form

y ¼ a + bxc. For example, one would clearly expect such

a scaling relationship between a linear measure of body

size (such as total length) and a cubic measure (such as

mass). These functions are well established as describing

relationships among morphological and physiological

traits as well as ecological and life-history variables (e.g.

Harvey & Pagel, 1991; Charnov, 1993; Enquist et al.,

1999; Hendriks, 1999; Garland & Ives, 2000). However,

there may often be no explicit theoretical expectation of

an allometric relationship between two traits, in which

case there is no a priori reason for a power function and

the pattern must be evaluated empirically (Harvey &

Pagel, 1991).

There are other cases in which we might expect

nonlinear relationships to arise. For example, when

predicting that a trait reaches a maximum at a particular

body size (e.g. reproductive power: Jones & Purvis,

1997), one may expect a quadratic relationship. In other

cases, physiological and evolutionary constraints may

impose limits that preclude linear relationships between

traits, and nonlinear relationships should be expected

when traits have lower or upper bounds (e.g. gestation

time can never be negative; proportions are bounded by

zero and one). In such cases, the relationship may be

better described by loglinear or logistic functions, and

appropriate transformations can be used to produce a

linear relationship (see below).

When there is no prior expectation for the shape of the

function relating the traits, detecting nonlinearity is

complicated by nonindependence of species values. For

example, it is important to check whether any apparent

nonlinearity is caused solely by a single clade in the

database. If this is not the case, standard diagnostics can

be used to evaluate the shape of the line. Residuals from

a linear regression may be plotted against the x-variable;

systematic changes in the sign and scatter of residuals

indicate that y may be nonlinearly related to x (Fig. 4;

Sokal & Rohlf, 1995; Zar, 1999). In addition to residual

analysis, the fit of alternative linear and curvilinear

models to the data can be compared statistically (Sokal &

Rohlf, 1995, section 16.6). The data are still noninde-

pendent (because these are species values), so the

diagnostics described above should be used with caution.

An underlying nonlinearity may sometimes be detect-

able in the form of an apparent nonzero intercept in the

relationship between the contrasts (Harvey & Pagel,

1991; but see Grafen, 1992). However, nonlinearity most

often leads to an increase in scatter (e.g. Fig. 1) in the

contrasts, and not to a nonzero intercept, so this is not an

adequate diagnostic. In addition, because the primary

consequence is to increase scatter in the relationship

between contrasts, searching for a curvilinear relation-

ship between contrasts (Garland et al., 1992) is not a

sufficient test. A more promising method was used by

Jones & Purvis (1997) to detect changes in the slope of

the line relating two traits. In this method the ratio of the

y-contrast to the x-contrast is calculated for each node

(Jones & Purvis call this the contrast slope). Then the

contrast slope is plotted against the mean x-value of the

taxa being compared. If the underlying relationship is

linear there should be no change in the contrast slope

with the x variable. However, if such a plot shows an

increasing or decreasing pattern this is evidence for

nonlinearity in the underlying relationship. Garland et al.

(1992) describe a similar method in which the regression

between the contrasts includes one or both x-values (or

their sum) as covariates.

Finally, when data are not continuous (e.g. ranks), the

implementation of standard PIC is problematic. With

such data, there is no method to test whether the true

relationship between traits is linear because the distances

between successive ranks may be arbitrary and inconsis-

tent. As a consequence, the analysis of ordinal data using

ordinary PIC analyses is unwise. A modified procedure

may sometimes be used for analysing rank and categor-

ical data (Purvis & Rambaut, 1995).

Using PIC when relationships are nonlinear

Many curvilinear relationships can be evaluated with PIC

if they can be transformed. Allometric power functions

can be linearized by log-transforming both variables

(Harvey & Pagel, 1991; Garland et al., 1992). Allometric

relationships are also likely to have multiplicative and

log-normally distributed error. If so, log–log transforma-

tion will also yield appropriate normal errors. Exponen-

tial relationships (y ¼ aebx) can be similarly linearized by

log-transforming the y-variable. When appropriate, other

transformations (e.g. square root transformation of

counts or arcsine square root transformation of propor-
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tions) can be used (Sokal & Rohlf, 1995; Zar, 1999). As

before, species values cannot be considered independent

of one another and a valuable exercise would be to check

whether all clades in the analysis show roughly the same

pattern after transformation (Grafen, 1989). Data trans-

formations have also been advocated to ensure that

Brownian assumptions are satisfied and that resulting

contrasts are phylogenetically independent (Purvis &

Rambaut, 1995; Freckleton, 2000). Thus, whatever

transformation used one must ensure both a linear

underlying relationship and independence of contrasts.

Finally, not all nonlinear relationships can be trans-

formed to meet the assumptions of PIC. For such

relationships (e.g. quadratic curves), alternative compar-

ative methods may be preferable.

Alternatives to PIC

Other techniques for the comparative analysis of con-

tinuous data may sometimes be more appropriate than

PIC. Some of these methods allow the relationship

between traits to be described by a curvilinear function

while incorporating phylogenetic nonindependence into

a covariance matrix in the error term. Certain curvilinear

relationships with known error structure can be analysed

with generalized linear models (GLMs). Martins &

Hansen (1997) discuss a method of incorporating

phylogeny into GLMs, and they demonstrate this using

a generalized least squares (GLS) approach. The GLS

method can be thought of as an extension of PIC (Grafen,

1989; Martins & Hansen, 1997; Garland & Ives, 2000;

Rohlf, 2001) in which one can model how the expected

similarity between species declines as their phylogenetic

separation increases. This method offers substantial

flexibility in model specification (Grafen, 1989; Martins

& Hansen, 1997). For example, the fit of alternative

models (e.g. y ¼ x vs. y ¼ x2 or y ¼ x + x2) can be

compared to evaluate whether there is significant non-

linearity in the relationship. A similar technique, gener-

alized nonlinear least squares (Pinheiro & Bates, 2000),

can be used for more complicated curvilinear relation-

ships. In addition to least-squares methods of incorporat-

ing phylogenetic information into comparative studies,

the use of generalized estimating equations has recently

been proposed (Paradis & Claude, 2002). This approach

can be used to model the evolution of traits that are

expected to have Poisson or binomial distributions, for

example counts bounded by zero, or dichotomous traits

(e.g. bristle number or presence/absence of a male

ornament, respectively).

New methods for analysing interspecific data are

continually being developed and tested (reviewed in

Martins & Hansen, 1996, 1997; Martins, 2000; Freckleton

et al., 2002; Martins et al., 2002; Blomberg et al., 2003),

and are increasingly implemented in software written for

comparative biologists (e.g. CAIC, Purvis & Rambaut,

1995; PDAP, Garland et al., 1999; COMPARE, Martins,

2001; ape, Paradis et al., 2002). Although PIC is easy to

understand and relatively simple to perform, we encour-

age comparative biologists to explore alternative meth-

ods. These alternatives typically allow some assumptions

of PIC (e.g. linearity, BM evolution) to be relaxed.

However, the ability of these methods to deal with

various kinds of nonlinearity has not been treated in

detail (but see Martins & Hansen, 1997).

Conclusions

We have shown that by ignoring the shape of the

relationship between variables, biologists using PIC

methods run the risk of failing to uncover evolutionary

patterns. However, nonlinear relationships are not

merely obstacles in analysis – they can also provide

insights into evolutionary mechanisms. We believe that

the goals of PCMs are not simply to determine the

‘significance’ of relationships but also to determine their

form, as this may help generate hypotheses about

constraints and causal mechanisms. We suggest that

biologists incorporate theoretical and empirical informa-

tion about the shape of these relationships into compar-

ative studies.
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their suggestions, and O. Krüger for permission to use his

data on raptors.

References

Blomberg, S.P., Garland, T., Jr & Ives, A.R. 2003. Testing for

phylogenetic signal in comparative data: behavioral traits are

more labile. Evolution 57: 717–745.

Burt, A. 1989. Comparative methods using phylogenetically

independent contrasts. Oxf. Surv. Evol. Biol. 6: 33–53.

Charnov, E.L. 1993. Life History Invariants. Oxford University

Press, Oxford.

Enquist, B.J., West, G.B., Charnov, E.L. & Brown, J.H. 1999.

Allometric scaling of production and life-history variation in

vascular plants. Nature 401: 907–911.

Felsenstein, J. 1985. Phylogenies and the comparative method.

Am. Nat. 125: 1–15.

Freckleton, R.P. 2000. Phylogenetic tests of ecological and

evolutionary hypotheses: checking for phylogenetic inde-

pendence. Funct. Ecol. 14: 129–134.

Freckleton, R.P., Harvey, P.H. & Pagel, M. 2002. Phylogenetic

analysis and comparative data: a test and review of evidence.

Am. Nat. 160: 712–726.

Garland, T., Jr & Ives, A.R. 2000. Using the past to predict the

present: confidence intervals for regression equations in

phylogenetic comparative methods. Am. Nat. 155: 346–364.

Garland, T., Jr, Harvey, P.H. & Ives, A.R. 1992. Procedures for

the analysis of comparative data using independent contrasts.

Syst. Biol. 41: 18–32.

714 S. QUADER ET AL.

J . E V O L . B I O L . 1 7 ( 2 0 0 4 ) 7 0 9 – 7 1 5 ª 2 0 0 4 B L A C K W E L L P U B L I S H I N G L T D



Garland, T., Jr, Midford, P.E. & Ives, A.R. 1999. An introduction

to phylogenetically based statistical methods, with a new

method for confidence intervals on ancestral states. Am. Zool.

39: 374–388.

Grafen, A. 1989. The phylogenetic regression. Philos. Trans. R.

Soc. B 326: 119–157.

Grafen, A. 1992. The uniqueness of the phylogenetic regression.

J. Theor. Biol. 156: 405–423.

Harvey, P.H. & Pagel, M.D. 1991. The Comparative Method in

Evolutionary Biology. Oxford University Press, Oxford.

Hendriks, A.J. 1999. Allometric scaling of rate, age and density

parameters in ecological models. Oikos 86: 293–310.

Holdaway, R.N. 1994. An exploratory phylogenetic analysis of

the genera in the Accipitridae, with notes on the biogeography

of the family. In: Raptor Conservation Today (B. U. Meyburg &

R. D. Chancellor, eds), pp. 601–647. Pica Press, Berlin.

Ihaka, R. & Gentleman, R. 1996. R: a language for data analysis

and graphics. J. Comp. Graph. Stat. 5: 299–314.

Jones, K.E. & Purvis, A. 1997. An optimum body size for

mammals? Comparative evidence from bats. Funct. Ecol. 11:

751–756.
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